What Is blue carbon and why does it matter?

Photo showing a mangrove forest

Though terrestrial forests typically get most of the attention, they are not the only ecosystems that possess a natural ability to fight climate change. There are three coastal ecosystems that are also highly effective at sequestering carbon dioxide: mangroves, seagrass, and salt marshes. The carbon that is captured and stored by these coastal ecosystems is known as “blue carbon.” Pound for pound, these blue carbon ecosystems can actually store up to 10 times more carbon than tropical rainforests!

Blue carbon ecosystems not only prevent climate change, they also protect coastal communities from its harmful impacts, such as rising seas and flooding, and provide important habitats for marine life. Sadly, humans continually overlook the benefits of these incredible ecosystems and are destroying them at an alarming rate. It is estimated that every minute, up to three football fields of coastal habitats are being lost.

Mangroves

Mangroves are trees or shrubs that are found along coastlines in the tropics and subtropics. Though exact estimates vary, there are at least 50 species of mangroves worldwide. Mangroves are one of the most distinguishable types of plants thanks to their sprawling, tangled roots which are visible above the ground.

Mangroves are hearty plants that are uniquely adapted to survive in inhospitable conditions. Because mangroves grow where the land meets the sea, they are regularly flooded with salt water when the tide comes in. Their sturdy, stilt-like roots keep them stable as they are submerged under water. While the salty seawater would kill most other trees, mangroves are able to filter out most of the salt as it enters their roots. Mangroves’ above ground root systems also help them to “breathe,” which allows them to thrive in oxygen-poor soils.

This is an excerpt from an article originally published by Sustainable Tourism International

Related Articles

- Sustainable Tourism Crash Course -spot_img

Useful resources